Heterocyclen als Liganden, VI¹⁾

Die verbrückende Koordination eines 1,1'-Diazaferrocens in einem zweikernigen Silberkomplex – eine ungewöhnliche Struktur

Norbert Kuhn**, Eva-Maria Horn*, Roland Boese^b und Dieter Bläser^b

Fachbereich 6 (Chemie) der Universität-Gesamthochschule Duisburg^a, Lotharstraße 1, D-4100 Duisburg 1

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen^b, Universitätsstraße 3-5, D-4300 Essen 1

Eingegangen am 31. Juli 1989

Key Words: 1,1'-Diazaferrocene coordination / Silver complex

Heterocycles as Ligands, VI^{1} . – The Bridging Coordination of a 1,1'-Diazaferrocene in a Dinuclear Silver Complex – an Uncommon Structure

 $[Ag_2(\mu-pyr_5^{*}Fe)_2](BF_4)_2 \cdot 2$ MeOH (4, $pyr^* = C_4Me_4N$) is obtained by reaction of $pyr_5^{*}Fe \cdot 2$ Hpyr^{*} (3) with AgBF₄ in MeOH. The X-ray structure of 4 shows the bridging coordination mode of the diazaferrocene ligands with a nearly linear geometry at the silver atoms.

 $C_4Me_4N^-$ (pyr^{*-}) weist als η^5 -koordinierter Ligand im Azaferrocen 1 eine den Pyridinen vergleichbare Basizität auf¹). Das durch Koordination an azide Fragmente E stabile Octamethyl-1,1'-diazaferrocen 2 [(pyr^{*}·E)₂Fe; E = Hpyr^{*2a}), BH₃^{2b}] läßt folglich interessante Verwendungsmöglichkeiten als bifunktioneller Ligand in Metallkomplexen erwarten.

Tatsächlich haben wir durch Umsetzung des Tetramethylpyrrol-Addukts 3 mit AgBF₄ in Methanol den Silberkomplex 4 erhalten. Die luftstabile, in Methanol und Aceton kurzzeitig unzersetzt lösliche Verbindung zeigt in den NMR-Spektren das erwartete Signalmuster (vgl. Experimenteller Teil); auffällig hierbei ist im ¹H-NMR-Spektrum die gegenüber (pyr*·E)₂Fe²⁾ deutliche Entschirmung der Methyl-Protonen ($\delta = 2.57$, 1.87) als Folge der in 4 starken σ -Akzeptoreigenschaft des Silbers; die unauffällige chemische Verschiebung im ¹³C-NMR-Spektrum für C-1 ($\delta = 100.26$) liefert keinen Hinweis auf eine zusätzliche π -Wechselwirkung³⁾.

Im Kristall ist 4 zentrosymmetrisch angeordnet (Abb. 1, Tab. 1 und 2). Die pyr*-Ringe eines jeden Diazaferrocen-Liganden sind, anders als in den Addukten (pyr*·E)₂Fe², zueinander annähernd ekliptisch konfiguriert (Torsionswinkel N1-pyr^{*}_{Zentrum}pyr*'_{Zentrum} - N 2 1.1°); hierbei befinden sich die Stickstoff-Atome zueinander in syn-Position. Im Gegensatz jedoch zu dem hierin baugleichen Diarsaferrocen $(2,5-Me_2C_4H_2As)_2Fe^{4}$ sind in 4 die Ebenen der pyr*-Ringe in jedem Diazaferrocen-Fragment in Richtung auf die ringständigen Heteroatome verkippt (Interplanarwinkel pyr*-pyr*' 2.7°, pyr^{*}_{Zentrum}-Fe-pyr^{*}_{Zentrum} 178.3°). Die hierbei gegenüber 3 nahezu unveränderte Geometrie der Fragmente pyr*-Fe [pyr^{*}_{zentrum}-Fe 1.656, pyr^{*}_{Zentrum}-Fe 1.658, Fe-N1 2.014(2), Fe-N2 2.013(2) Å, weitere Bindungsabstände und -winkel vgl. Tab. 2] zeigt, daß die Bindung pyr*-Fe in verschiedenen Basenfunktionen von 2 weder durch die relative Stellung der pyr*-Liganden noch durch die Beschaffenheit der hieran koordinierten aziden Fragmente E sonderlich beeinflußt wird. Dieser Umstand läßt für 3 eine große Anwendungsbreite als Ligand erwarten.

Die Struktur von 4 ist auch aus der Sicht des Silbers beachtlich. Im Gegensatz zur Koordinationschemie des einwertigen Goldes⁵⁾ wird hier der Aufbau von doppelt verbrückten Zweikernkomplexen mit linearer Koordinationsgeometrie⁶⁾ zugunsten oligomerer und polymerer Strukturen vernachlässigt⁷⁾. Die Tendenz zur Aufweitung der Koordinationssphäre führt bei $[Ag(dpm)NO_3]_2^{6b}$ [dpm = Bis-(diphenylphosphino)methan] im Kristall zur Reduktion des Winkels P - Ag - P' bei gleichzeitiger Koordination des Gegenions, so daß insgesamt eine verzerrt tetraedrische Geometrie am Koordinationszentrum erreicht wird. In 4 erzwingt der Platzbedarf der Diazaferrocen-Liganden eine nahezu lineare Struktur des Fragments N-Ag-N' [N1-Ag-N2' 178.3(1)°], wie sie auch bei der Koordination anderer Stickstoff-Heterocyclen an einwertiges Silber beobachtet wird⁸⁾. Die im Vergleich hiermit kurzen Stickstoff-Silber-Bindungen in 4 [Ag-N1 2.109(2), Ag-N2' 2.106(2) Å] unterstreichen den starken Donorcharakter der Diazaferrocen-Liganden⁹⁾. Die Position des "Gegen-Ions" [BF₄·MeOH]⁻ in 4

Abb. 1. Zwei Ansichten von [Ag₂(µ-pyr^{*}₂Fe)₂](BF₄)₂ · 2 MeOH (4) im Kristall. Die Verbindungslinie zwischen Fe und der geometrischen Mitte des Rings C(1) − C(4) N(1) bildet mit dem Lot von Fe auf diese Ebene einen Winkel von 1.9°; hierdurch wird die Projektion des Koordinationszentrums auf die Ringebene um 0.055 Å in Richtung auf das Stickstoff-Atom verschoben.

führt hier zu einer T-förmigen Koordinationsgeometrie am Silber $[Ag-O 2.631(2) \text{ Å}, N1-Ag-O 92.6(1), N2'-Ag-O 88.0(1)^{\circ}]$, bei der das Sauerstoff-Atom deutlich (1.294 Å) aus der Ebene der Stickstoff-Atome herausgehoben ist, der die Silber-Atome in guter Näherung [0.031(5) Å] zugehören $(N1-Ag-O-C17-154.6^{\circ})$. In der Geometrie von $[BF_4 \cdot MeOH]^-$ ist die fast lineare Wasserstoff-Brücke auffällig $[O-H 0.91(6), F2-H 1.88(6) \text{ Å}, O-H-F2 175.2^{\circ}]$.

Metallabstände der in 4 beobachteten Länge $[dAg \cdots Ag' 3.257(1)$ Å] werden in Mehrkernkomplexen des Silbers, obwohl deutlich innerhalb des van-der-Waals-Abstandes von 3.40 Å¹⁰ befindlich, als nichtbindend aufgefaßt¹¹. Die zur Ausbildung homoatomarer d¹⁰d¹⁰-Wechselwirkungen günstige Koordinationsgeometrie am Silber¹² macht die in der Struktur von 4 erkenntliche Tendenz zur Verringerung des Abstandes Ag···Ag' erwähnenswert. Die begrenzte stereochemische Belastbarkeit des Diazaferrocen-Liganden verhindert jedoch ein weiteres Zusammenrücken der Silber-Zentren in den Bereich der bindenden Wechselwirkungen¹³ ebenso wie die Ausbildung einer Chelat-Struktur. Hierdurch bildet 2 in seinen Koordinationseigenschaften eine reizvolle Ergänzung zu den bifunktionellen Heterocyclen 2,2'-Bipyridin und 1,10-Phenanthrolin, die bevorzugt einkernige Chelat-Komplexe stabilisieren.

Die in 4 nachgewiesene verbrückende σ , π -Koordinierung eines Pyrrolyl-Liganden entspricht dem für die Zersetzung von Azaferrocen vorgeschlagenen Übergangszustand³⁾ und verleiht dem Strukturvorschlag für das polymere $Fe_x(C_4H_4N)_y^{14}$ zusätzliches Gewicht.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt. Wir danken Prof. Dr. P. Sartori für seine freundliche Förderung.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Argon in gereinigten Lösungsmitteln durchgeführt. – NMR-Spektren: Bruker WM 300 (¹³C-NMR) und Jeol PMX 60 (¹H-NMR).

Röntgenstrukturanalyse von 4¹⁵: Nicolet-R 3m/V-Vierkreisdiffraktometer Mo- K_{α} -Strahlung, Graphitmonochromator, Kristalldimensionen [mm] 0.32 × 0.27 × 0.23, Meßtemperatur 125 K, Zelldimensionen [Å] a = 8.333(1), b = 9.602(1), c = 13.522(2), $\alpha = 76.02(1)^{\circ}$, $\beta = 77.89(1)^{\circ}$, $\gamma = 81.15(1)^{\circ}$, V = 1020.5(2) Å³, Z = 1, $D_{\text{ber.}}$ [g/cm³] = 1.715, μ [mm⁻¹] = 1.70, triklin, Raumgruppe P Ī, ω -Scan-Datensammlung von 5944 unabhängigen Intensitäten ($2\theta_{\text{max}} = 50^{\circ}$), davon 5831 [$F_{o} \ge 4 \sigma(F)$] beobachtet, empirische Absorptionskorrektur: max/min Transmission 0.651/ 0.529, R_{Merg} vor/nach der Korrektur 0.031/0.011, Strukturlösung mit Direkten Methoden und Verfeinerung mit SHELXTL-Plus

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope atomare Temperaturfaktoren $[pm^2]$ (* äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors)

	×	У	Z	U _{eq}
Ag	3639(1)	9259(1)	9650(1)	133(1)*
Fe	6307(1)	11418(1)	7548(1)	104(1)*
N(1)	4414(2)	10202(2)	8075(1)	136(4)*
N(2)	7191(2)	11630(2)	8774(1)	130(4)*
C(1)	5639(2)	9530(2)	7414(2)	144(5)*
C(2)	5871(3)	10462(2)	6413(2)	159(5)*
C(3)	4760(2)	11745(2)	6473(2)	140(5)*
C(4)	3864(2)	11556(2)	7514(2)	142(5)*
C(5)	8453(2)	11002(2)	8106(2)	156(5)*
C(6)	8708(3)	11986(2)	7125(2)	177(6)*
C(7)	7568(3)	13245(2)	7199(2)	170(5)*
C(8)	6640(2)	12997(2)	8225(2)	147(5)*
C(9)	6355(3)	8006(2)	7739(2)	230(6)*
C(10)	7044(3)	10118(3)	5469(2)	215(6)*
C(11)	4529(3)	13011(2)	5603(2)	204(6)*
C(12)	2480(3)	12490(2)	7987(2)	188(6)*
C(13)	9393(3)	9598(3)	8484(2)	237(6)*
C(14)	9989(3)	11754(3)	6195(2)	252(7)*
C(15)	7422(3)	14610(2)	6387(2)	249(7)*
C(16)	5381(3)	14005(2)	8739(2)	227(6)*
C(17)	1365(3)	6237(3)	9861(2)	326(8)*
0	2613(2)	7063(2)	9206(2)	287(6)*
B(1)	1256(3)	6563(3)	6897(2)	239(7)*
F(1)	217(2)	5870(2)	7762(1)	405(5)*
F(2)	2683(3)	6766(3)	7200(2)	646(10)*
F(3)	1695(3)	5721(2)	6162(1)	501(7)*
F(4)	447(2)	7869(2)	6471(1)	398(6)*

Heterocyclen als Liganden, VI

(1983), 284 Parameter, alle Nichtwasserstoffatome anisotrop, alle Methylwasserstoffatome isotrop als starre Gruppen (C-H 0.96 Å, H-C-H 109.5°) mit gruppenweise gleichen Temperaturfaktoren, das sauerstoffgebundene Wasserstoffatom frei verfeinert, R =0.026, $R_w = 0.039$, $w^{-1} = [\sigma^2(F_0) + 0.00148 \cdot F_0^2]$, maximale Restelektronendichte 0.869e/Å³, 0.82 Å von F(3).

Tab. 2. Ausgewählte Atomabstände	[Å] und	Bindungswinkel	[°]	l
----------------------------------	----	-------	----------------	-----	---

Ag-N(1)	2.109 (2)	Ag-0	2.631	(2)		
Ag••Ag'	3.257 (1)	Ag-N(2')	2.106	(2)		
Fe-N(1)	2.014 (2)	Fe-N(2)	2.013	(2)		
Fe-C(1)	2.035 (2)	Fe-C(2)	2.085	(2)		
Fe-C(3)	2.077 (2)	Fe-C(4)	2.030	(2)		
Fe-C(5)	2.032 (2)	Fe-C(6)	2.081	(2)		
Fe-C(7)	2.088 (2)	F e- C(8)	2.030	(2)		
N(1)-C(1)	1.397 (2)	N(1)-C(4)	1.400	(2)		
N(2)-C(5)	1.398 (2)	N(2)-C(8)	1.403	(2)		
N(2)-Ag'	2.106 (2)	C(1)-C(2)	1.425	(3)		
C(1)-C(9)	1.490 (3)	C(2)-C(3)	1.430	(3)		
C(3)-C(4)	1.432 (3)	C(5)-C(6)	1.427	(3)		
C(6)-C(7)	1.428 (3)	C(7)-C(8)	1.424	(3)		
C(17)-0	1.423 (3)	0-H	0.910	(56)		
F(2)-H	1.88 (6)						
N(1)-Ag-N(2')	178.3(*)	N(1)-Ag-0	92.0	6(1)		
0-Ag-N(2')	88.0(*)	N(1)-Ag-Ag'	91.8	B(1)		
0-Ag-Ag'	152.1(1)	N(1)-Fe-N(2)	108.3(1)			
Ag-0-C(17)	124.3(2	2)	Ag-O-H	121.	6(30)		
C(17)-O-H	108.1(3	32)					
0-H-F	(2)			175.2			
(Zentrum)pyr*(1)-N(1)-Ag				177.4			
(Zentrum)pyr*(1)-C(1)-C(9)							
(Zentrum)pyr*(1)-C(2)-C(10)					178.0		
(Zentrum)pyr*(1)-C(3)-C(11)					178.2		
(Zentrum)pyr*(1)-C(4)-C(12)					174.3		
(Zentrum)pyr*(2)-N(2)-Ag'					177.1		
(Zentrum)pyr*(2)-C(5)-C(13)							
(Zentrum)pyr*(2)-C(6)-C(14)							
(Zentrum)pyr*(2)-C(7)-C(15)					177.0		
(Zentrum)pyr*(2)-C(8)-C(16)							
(Zentrum)pyr*(1)-FE-(Zentrum)pyr*(2)							

 $[Ag_{2}\{\mu-(C_{4}Me_{4}N)_{2}Fe_{2}\}](BF_{4})_{2} \cdot 2 MeOH$ (4): 0.60 g (1.1 mmol) 3 werden mit 0.85 g (4.4 mmol) AgBF4 in 20 ml Methanol ca. 15 min gerührt. Die filtrierte Lösung wird mit 50 ml Ether versetzt; der hierbei resultierende Feststoff wird bei - 78°C aus Methanol/Ether umkristallisiert; Ausb. 0.27 g 4 (47%), orangefarbene Kristalle. -¹H-NMR ([D₆]Aceton, TMS int.): $\delta = 2.67$ (s, 6H; OCH₃), 2.57 (s, $24 \text{ H}; 2,5-\text{CH}_3$, 1.87 (s, 24 H; 3,4-CH₃), OH nicht beobachtet. - ¹³C-NMR ([D₆]Aceton, TMS int.): $\delta = 100.26$ (C-2,5), 88.35 (C-3,4), 49.73 (OCH₃), 13.84 (2,5-CH₃), 8.20 (3,4-CH₃).

C₃₄H₅₆Ag₂B₂F₈Fe₂N₄O₂ (1053.8) Ber. C 38.75 H 5.36 N 5.32 Gef. C 37.91 H 5.13 N 5.42 CAS-Registry-Nummern

3: 116927-86-7 / 4: 123075-69-4 / 4 (ohne 2 MeOH): 123075-66-1 / AgBF₄: 14104-20-2

- V. Mitteilung: N. Kuhn, M. Schulten, E. Zauder, N. Augart, R. Boese, Chem. Ber. 122 (1989) 1891.
 ^{2) 2a)} N. Kuhn, E.-M. Horn, R. Boese, N. Augart, Angew. Chem.
- ¹⁰⁰ (1988) 1433; Angew. Chem. Int. Ed. Engl. 27 (1988) 1433; Angew. Chem. Int. Ed. Engl. 27 (1988) 1368.
 ^{2b)} N. Kuhn, E.-M. Horn, R. Boese, N. Augart, Angew. Chem. 101 (1989) 354; Angew. Chem. Int. Ed. Engl. 28 (1989) 342.
 ³⁾ Im ¹³C-NMR-Spektrum von C₅H₅FeL₂(η'-NC₄H₄) wird die gegenüber C₄H₄NH beobachtete Entschirmung von C-1 um ca. 17
- ppm einer zusätzlichen π -Donor-Funktion des Pyrrolyl-Liganden zugeschrieben: A. Evraty, N. Jubran, A. Goldman, Inorg. Chem. 21 (1982) 868; diese könnte wegen des koordinativ ungesättigten Charakters der Silberzentren auch in 4 wirksam werden.
- ⁴⁾ L. Chiche, J. Galy, G. Thiollet, F. Mathey, Acta Crystallogr., Sect. B, **36** (1980) 1344.
- ⁵⁾ R. J. Puddephatt in Conprehensive Coordination Chemistry
- (G. Wilkinson, Ed.), Bd. 5, Pergamon Press, Oxford 1987. Einzelfällen belegt, vgl. z.B. H. C. Freeman, C. B. Acland, J. Chem. Soc. D 1971 1016. – R. G. Griffin, J. D. Ellet, M. Mehring, J. G. Bullit, J. S. Waugh, J. Chem. Phys. 57 (1972) 2147. – ^{6b)} Anhand von NMR-Daten wird für Ag(dpm)NO₃ in Lösung ein Dissoziationsgleichgewicht unter Bildung von $[Ag(dpm)]_2^2$ [dpm = Bis(diphenylphosphino)methan] vorgeschlagen: D. M. Ho, R. Bau, *Inorg. Chem.* **22** (1983) 4073. - ⁶⁰ Für Verbindungen des Typs $[R_2P(S)NR]Ag$ und $[RS(NR')_2]Ag$ werden in Lö-sung dimere Formeleinheiten gefunden: N. Kuhn, A. Kuhn, P. Sartori, *Chem.-Ztg.* **112** (1988) 251; J. Kuyper, P. C. Keijzer, K. Vrieze, J. Organomet. Chem. 116 (1976) 1
- ⁷⁾ R. J. Lancashire in Comprehensive Coordination Chemistry (G. Wilkinson, Ed.), Bd. 5, Pergamon Press, Oxford 1987.
- ⁸⁾ Vgl. z.B. die Struktur von $[Ag(C_5H_5N)_2]NO_3$ H₂O: S. Menchetti, G. Rossi, V. Tazzoli, Rend. 1st. Lombardo Sci. Lettere A, 104 (1970) 309, zit. in Gmelin Handbuch der Anorg. Chemie, Silber B6, Springer Verlag, Berlin 1975
- ⁹⁾ Die lineare Koordination von N-Heterocyclen an einwertiges Silber führt in der Regel zu Ag – N-Bindungslängen von ca. 2.15 – 2.25 Å⁷⁾. Der in 4 beobachtete Wert wird, abgesehen vom Kation $[Ag(NH_3)_2]^{+16a}$, nur in Komplexen mit sp-hybridisier-tem Stickstoff erreicht ^{16b} oder unterboten ^{16c)}.
- ¹⁰⁾ A. Bondi, J. Phys. Chem. 68 (1964) 441.
- ¹¹⁾ Vgl. z. B. A. A. M. Aly, D. Neugebauer, O. Orama, U. Schubert, H. Schmidbaur, Angew. Chem. 90 (1978) 125; Angew. Chem. Int. Ed. Engl. 17 (1978) 125.
- ¹²⁾ In entsprechenden Verbindungen des Goldes mit linearer Koordinationsgeometrie sind schwache bindende Wechselwirkungen senkrecht zur Koordinationsachse als Folge einer Einmischung der 6s²-Zustände in die 5d¹⁰-Zustände durch Berechnung der Bindungsverhältnisse und experimentelle Daten gesichert: Y. Jiang, S. Alvarez, R. Hoffmann, *Inorg. Chem.* 24 (1985) 749. – H. Schmidbaur, K. Dziwok, A. Grohmann, G. Müller, *Chem.* Ber. 122 (1989) 893. – H. Schmidbaur, W. Graf, G. Müller, Angew. Chem. 100 (1988) 439; Angew. Chem. Int. Ed. Engl. 27 1988) 417
- 13) Bindende Wechselwirkungen des einwertigen Silbers, insbesondere in Festkörperverbindungen, werden für Metallabstände von ca. 2.70-3.10 Å diskutiert, vgl. M. Jansen, Angew. Chem. 99 (1987) 1136; Angew. Chem. Int. Ed. Engl. **26** (1987) 1098
- W. K. Reagen, L. J. Radonovich, J. Am. Chem. Soc. 109 (1987) 2193.
- ¹⁵⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54063, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- dert werden. ¹⁶⁾ ^{16a]} T. Yamaguchi, O. Lindqvist, Acta Chem. Scand., Ser. A, **37** (1983) 685. H. M. Maurer, A. Weiss, Z. Kristallogr. **146** (1978) 227. ^{16b]} H. W. Roesky, J. Schimkowiak, K. Meyer-Bäse, P. G. Jones, Angew. Chem. **98** (1986) 998; Angew. Chem. Int. Ed. Engl. **25** (1986) 1005. ^{16c]} K. Aarflot, K. Ase, Acta Chem. Scand., Ser. A, **28** (1974) 137. T. Nomura, Y. Saito, Bull. Chem. Sca. Inn. **30** (1966) 1468 Soc. Jpn. 39 (1966) 1468.